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The emergence of whole genome association scans in barley
Robbie Waugh1, Jean-Luc Jannink2, Gary J Muehlbauer3 and Luke Ramsay1
Barley geneticists are currently using association genetics to

identify and fine map traits directly in elite plant breeding

material. This has been made possible by the development of a

highly parallel SNP assay platform that provides sufficient

marker density for genome-wide scans and linkage

disequilibrium-led gene identification. By leveraging the

combined resources of the barley research and breeding

sectors, marker-trait associations are being identified and a

renewed interest has emerged in novel strategies for barley

improvement. New database and visualization tools have been

developed and statistical methods adapted from human

genetics to account for complexities in the datasets. Exciting

early results suggest that association genetics will assume a

central role in establishing genotype-to-phenotype

relationships.
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Introduction
Association genetics encompasses aspects of population

and quantitative genetics that are needed to elucidate the

history of a population in order to identify genotype to

phenotype relationships on the basis of single and joint

frequencies of observable genetic polymorphisms [1,2].

In the barley research and breeding communities there is

increasing focus on association studies because they can

directly analyze germplasm from contemporary breeding

programs and consequently identify marker associations

with breeding-relevant alleles. As the linkage disequili-

brium (LD—see below) observed in such a study popu-

lation arose outside and before the experiment through

many rounds of meiosis and recombination, the resolution

of observed associations is anticipated to be high. In this

review, we describe what is known of the structure of LD
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in wild through cultivated barley, the design and imple-

mentation of genetic studies suitable to varying levels of

LD, some of the bioinformatic and statistical tools and

analyses being brought to bear, and finally some early

successes and the directions they suggest for further

study.

Linkage disequilibrium and association
analysis
Alleles at two or more loci are said to be in LD if they are

non-randomly co-inherited as determined by their indi-

vidual and joint frequencies [3��]. Consequently, for two

loci, the alleles at one locus are predictive of those present

at the other. Given its dependence on allele frequencies,

any measure of LD is population-specific. The forces that

generate LD are also those that generate allele frequency

changes, namely, mutation, drift and selection (Box 1)

[3��,4]. The only process that systematically reduces LD

is recombination, with LD between markers being

expected to decay as a function of their recombination

distance. This expectation is usually observed

(Figure 1a), and forms the basis for decisions on the

marker density required for effective association studies.

Short-range LD in wild species, landraces
and cultivars
As a selfing species, LD in barley is predicted to be

extensive [5,6]. Caldwell et al. [7�] examined short-range

LD across a 212 kb sequence surrounding the barley

Hardness (Ha) locus in cultivated, landrace and wild

species (H. vulgare ssp. spontaneum) genepools. While

highly significant association between paired sites

extended across the region in the cultivated genepool,

the landraces and wild species exhibited intermediate

and rapid levels of decay, respectively. Rapid rates of

intralocus LD decay were also observed in wild barley

accessions by Morrell et al. [8] while elevated levels of

intragenic LD between pairs of polymorphic sites in the

Bmy1 gene were observed in cultivated accessions [9].

Stracke et al. [10�] examined LD surrounding the Hv-
eIF4e virus resistance locus by analyzing 83 SNPs over a

132 kb sequence in a diverse collection of cultivated and

landrace accessions. In susceptible genotypes, LD broke

down over distances of <1 cM whereas in resistant geno-

types it extended completely across the region and by

including data from genetically linked sites could be

detected up to 5.5 cM away. Such observations are

illustrative of specific blocks of extended LD (i.e. ‘hap-

lotype blocks’) [11,12] being influenced by individual

gene histories, including the effects of breeding and

selection (as for Hv-Eif4e). Furthermore, the varying

extent of LD observed in the different barley genepools
www.sciencedirect.com

mailto:Robbie.Waugh@scri.ac.uk
http://dx.doi.org/10.1016/j.pbi.2008.12.007


LD in barley Waugh et al. 219

Box 1 Factors that generate LD

Mutation: Mutation generates LD because a mutant allele is

associated initially only with those alleles present on the mutated

chromosome.

Drift: Drift generates LD by sampling chromosomes at frequencies

departing from their equilibrium expectations [3��].

Selection: For neutral loci, selection’s effect depends on genetic

hitch-hiking, whereby all alleles associated with a selected allele

increase in frequency [3��]. This effect generates a signature of

selection of extensive LD around the mutant selected allele but not

the wild-type allele [4; and in barley, 10].

Population structure: Population structure is an important source of

LD because each subpopulation contributes an excess of gametes

carrying the alleles that it contains at high frequency.

Figure 1

Decay of LD, as measured by r2 against genetic distance in elite North

American barley. In (a), no adjustment for population structure has been

made. In (b), the r2 value shown is a partial r2 adjusted for structure by

multiple correlation including 20 principle component eigenvectors.

Lines are LOWESS regressions of r2 on genetic distance.
suggest that in gene discovery programs initial locus

detection could be conducted in one genepool and

fine-mapping and gene isolation in another [7�]. This

strategy will require the same causal polymorphism to

segregate and the relevant phenotype to be measurable in

both elite and wild genepools.

Towards genome-wide association studies
It became clear from these short-range studies that the

transition to genome-wide association mapping would

require tools and genetic analyses pioneered in model

species (e.g. human, maize, Arabidopsis [13]) to be

adapted to inbreeding crop plants. International collab-

orators subsequently initiated the development of a

highly multiplex unigene-based SNP assay platform

for barley [14��]. They chose Illumina’s oligo pool

assay (OPA) [15] as a high-plex marker platform. Three

pilot 1,536-plex OPAs have currently been evaluated

and 3072 of the best performing assays compressed

into two production barley OPAs (BOPA1 and 2) that

are already available to the community. Approaching

3000 of these SNPs have been genetically mapped,

enabling ‘first generation’ whole genome scans. An

alternative marker platform, Diversity Array Technol-

ogy (DArT), has also been developed and evaluated

[16,17].

Using the first pilot OPA, Rostoks et al. [14��] provided

initial evidence that the elite genepool could be effec-

tively queried genome-wide. In a collection of 102 culti-

vars, LD extended from <1 to >10 cM, consistent with

short-range LD observations and an earlier AFLP-based

analysis of 146 modern spring barley cultivars [18�,19].

The elite population displays unique features resulting

from a small number of founders [20] and its pseudo-

outbreeding nature resulting from extensive intermating

during breeding. On the basis of the observed LD and

level of allelic variation in the elite genepool Rostoks et al.
[14��] suggested that a few thousand bi-allelic SNPs may

suffice for initial genome scans to discover marker-trait

associations. This ‘elite genepool strategy’ has been
www.sciencedirect.com
adopted by two large association genetics programs in

the US (BarleyCAP, http://barleycap.cfans.umn.edu) and

UK (AGOUEB, http://www.agoueb.org). Both of these

ambitious projects seek to increase marker utilization in

barley breeding and genetics by mapping allelic variation

in traits currently being manipulated in contemporary

breeding programs. Other projects are embracing

the multiple genepool concept, aiming to exploit the

discriminatory LD observed in landrace and wild barley

populations for fine mapping and gene identification

(e.g. ExBarDiv: http://pgrc.ipk-gatersleben.de/barleynet/

projects_exbardiv.php).
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Statistical analysis issues
Data from non-experimental populations create both

analysis challenges and opportunities. Firstly, population

structure (differential relatedness among individuals) can

generate spurious association results. Analyses that

account for populations composed of subpopulations,

for lines related through pedigree, and for both exist

[21–23]. Explicit modelling of subpopulations can be

performed [24], but model-free methods (e.g. principal

components analysis) are also effective [25,26]. Adjust-

ments for structure generally lead to lower but more

appropriate LD estimates (Figure 1b). Secondly, higher

marker densities frequently result in higher numbers of

missing and erroneous data points. Methods developed in

human genetics allow missing marker data to be imputed

from surrounding loci [27]. Barley data have provided the

means to test imputation methods in a crop, creating

options to reduce genotyping demands and error rates

[28]. Thirdly, at current marker densities, it is feasible to

identify blocks of SNPs that are strongly associated and

these so-called ‘haplotype blocks’ may be useful units of

analysis to predict the phenotype (e.g. [29,30]).

Data storage and visualization
The use of high-plex marker assay platforms on thou-

sands of accessions quickly generates large amounts of

information that require new bioinformatics and data

handling tools. The Germinate data-base schema [31]
Figure 2

Outline strategy for candidate int-c gene identification using rice (or Brachypo

strongly associated gene-based SNP markers (bottom panel: x and y axes

association null hypothesis p-value). These were blasted against the rice gen

extensive conserved synteny between barley and rice. Surveying annotation

confirmed by resequencing an allelic series of int-c alleles (Ramsay, in prep
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was designed to handle all data types related to plant

genetic resources and has been extended to genotypic

data. BarleyCAP and AGOUEB data are being housed

in Germinate-derived databases along with genotypic,

phenotypic and pedigree information. ‘The Hordeum

Toolbox’ (http://www.hordeumtoolbox.org/) developed

in Barley CAP also includes phenotype and genotype

datasets that can be searched and sorted according to user

preference. Novel visualization tools such as Flapjack

(http://www.scri.ac.uk/research/genetics/platformtechnol-

ogies/bioinformatics/software) facilitate interpretation of

genotypic datasets allowing researchers and breeders to

interrogate aligned genotypes in a user-friendly environ-

ment. Such tools are a vital component of effective and

practical translational genomics programs that aspire

towards predictive crop improvement.

Some early successes
The initial survey of Rostoks et al. [14��] gives some

indication of the potential of association genetics in elite

barleys. As a surrogate for Mendelian traits the authors

assigned putative map locations for 43 out of 85

unmapped SNP loci through association with those

already mapped. They also found a strong association

in a region on barley chromosome 5HL with winter/spring

growth habit, despite correspondence of the trait with

population structure. Encouragingly the region showing

association coincided with a cluster of Arabidopsis CBF
dium) as a genomic model. A whole genome association scan identified

give respectively marker genetic positions and negative log of the no-

ome revealing adjacent orthologous sequences on a segment exhibiting

s of the surrounding genes identified a strong candidate gene that was

aration).
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gene homologues that are key regulators of the cold

acclimation signalling pathway [32]. This potential to

map Mendelian traits by association has been confirmed

recently by fine mapping a morphological character,

rachilla hair length, to 5HL using a panel of 192 individ-

uals and 4600 SNPs (Comadran J, unpublished).

The relevant scale for mapping resolution is the number

of candidate genes that could plausibly be associated with

a phenotype, which depends on LD decay but also on

gene density and the relationship between genetic and

physical distance [33,34]. In certain regions, the discrimi-

nation achieved through association mapping can delin-

eate sufficiently small genomic regions to allow strong

candidate genes to be assigned through conserved syn-

teny with genomic models. In our laboratory we have

used this feature to identify SNPs in genomic regions on

2HL and on 4HS associated with ear-type (two or six row

ear), a trait known to be largely controlled by two genes,

vrs1 and int-c. Through synteny with rice, we found that

the most significantly associated SNP on 2HL was seven

genes away from the recently cloned vrs1 [35�]. Similarly

for int-c on 4HS the two most highly associated SNPs were

two genes apart with a very strong candidate gene a

further seven genes away. Re-sequencing this candidate

in stocks of induced mutants at int-c confirmed this

candidate as the causal gene (Figure 2; Ramsay L,

unpublished). Thus, association mapping using a panel

of 192 lines has enabled the isolation of int-c. By com-

parison, a segregating progeny of 13 093 gametes was

necessary to clone vrs1 [35�].

Prospects
Results to date have shown that for many traits there will

be considerable merit in investing further in genome-

wide association mapping as both a locus and gene dis-

covery tool. However, further research remains necessary

for optimizing both population sizes (and substructure)

and density of molecular markers in order to afford

routine success. The assembly and release of com-

munity-wide mapping panels, comprised initially of elite

genetic materials accompanied by genotypic information,

is already under discussion and will address these issues.

Community panels will allow individual researchers to

focus on collecting specific phenotypic information,

which can be queried remotely to reveal marker-trait

associations, and a possible route towards gene isolation.

While the multiple genepool concept is potentially very

powerful and robust data are required to confirm it as a

viable strategy, preliminary indications are promising. For

example, highly significant associations between DArT

markers and rust resistance in wild material has been

reported [36], although no genes have yet been identified.

Studies in these genepools are important because they

offer the very real possibility of identifying novel allelic

variation that may be of considerable value to future crop

improvement. Finally, it has become increasingly appar-
www.sciencedirect.com
ent that the depth and quality of the OPA SNP data is

shining a very powerful light on the relations between

individual cultivars. As a result, end-user tailored software

tools are urgently required to facilitate innovative exploi-

tation of the data and to drive new genetic strategies

focused on practical crop improvement.
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